University of Bahrain Quality Assurance and Accreditation Center

Course Syllabus Form

1.	Course code:	EENG 486	2. Course title:	Intelligent Cont	rol						
3.	College: Engineering										
4.	<u>Department</u> : Electrical & Electronics Engineering										
5.	Program: Electrical and Electronics										
6.	Course credits: 3-1-3										
7.	Course NQF Level : 8										
8.	NQF Credits : 3										
9.	Prerequisite:										
10.	Lectures Timing & Location: MW, 1:00-2:45, Room: 14-140										
11.	Course web page: Blackboard and https://www.dr-e-mattar-uob.com/										
12.	Course Instructor: Prof. Ebrahim A. Mattar										
13.	Office Hours and Locat	<u>ion</u> : MTW: 11-1	pm, <u>(</u> S-40 -1114 <u>)</u>								
14.	Course coordinator:	Prof. Ebrahi	m A. Mattar								
15.	Academic year:	2025/2026									
16.	Semester:	Х	<mark>First</mark>	Second		Summer					
17.	Textbook(s):										
	Textbook(s): Kevin M. Passino and Stephen Yurkovich, Fuzzy Control, Addison Wesley Longman, Menlo Park, CA, 1998.										
18.	References:										
	J-S. R. Jang, C-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997,										
	Modern Control Engine			puting, Frentice Hall, 19:	'',						
	Control Systems Engine	•	•								
10	Other learning resource	ocused to a o Loo	ning field visits perior	licals software etc.)							
19. 20.	Course description (as			iicais, suitware, etc.j:							

This course is an introductory course on intelligent control. The main goal of the course is to learn a variety of fuzzy control methods, and to understand how they use a diversity of heuristic knowledge to achieve control specifications. Basic components and their roles in general fuzzy systems are explained to understand how fuzzy controllers work. Based on the basic idea of fuzzy control, advanced topics in intelligent control, including fuzzy identification, adaptive/supervisory fuzzy control, neural networks, genetic algorithms, expert systems and fuzzy decision-making systems, are also covered. Comparisons between fuzzy and conventional control techniques are done, and advantages and disadvantages of each technique will be clarified. Through various examples, students will learn how to apply intelligent control techniques to real engineering problems with Matlab.

University of Bahrain – Quality Assurance Accreditation Center - Course Syllabus Form

Note: Additional information could be added as required by the Instructor, (eg,
Policies)

Note: Items shown <u>underlined</u> cannot be changed without the department consent.

				Mapping to PILOs								
	CILOs	1	2	3	4	5	6	7				
1.	Explain fuzzy set and general fuzzy system											
2.	Design fuzzy controller			✓		✓	✓					
3.	Analyze fuzzy identification and estimation.	✓										
4.	Feedback Control Systems Characteristics. Performance of Feedback Control Systems	✓	✓									
5.	Classify Neural network and illustrate Adaptive Neural-Fuzzy Inference System (ANFIS)				✓			✓				
6.	Design Neural network control application	✓				✓	✓	✓				
7.	Explain Genetic algorithm					✓						

22. Course assessment:						
Assessment Type	Details/ Explanation of Assessment in relation to CILOs	Number	Weight	Date(s)		
Assignments	1,2,3,4,5,6,7	3-4	10%	Refer to course weekly breakdown below		
Examination-Midterm	3,4	1	30%	Refer to course weekly breakdown below		
Laboratory/Practical	1,2,6	4-6	10%	Refer to course weekly breakdown below		
Projects/Case Studies	5,6,7	1	10%	Refer to course weekly breakdown below		
Final Examination	1,2,5,67	1	40%	Refer to course weekly breakdown below		
Total			100%			

23. <u>Description of Topics Covered</u>					
Topic Title	Description				
(e.g. chapter/experiment title)					
Introduction to IC	Learn a variety of IC and Control Design methods.				
Fuzzy System	Understand how they use a diversity of heuristic knowledge to achieve control				
	specifications.				
Fuzzy System - ANFIS	Basic idea of fuzzy control, advanced topics in intelligent control, including fuzzy				
	identification.				
Neural Net	Adaptive/supervisory fuzzy control, neural networks, genetic algorithms.				
Learning ANN	Expert systems and fuzzy decision-making systems, are also covered.				
Genetics Programming	Comparisons between fuzzy and conventional control techniques are done, and advantages				
	and disadvantages of each technique.				
Design of ANN	Through various examples, students will learn how to apply intelligent control techniques to				
	real engineering problems with Matlab				

24. <u>W</u>	eekly Schedule				
Week	Date	Topics covered	CILOs	Teaching Method	Assessment
1	Sep. 19-22	Review		Lectures	
2	Sep. 22-26	Fuzzy set and general fuzzy system	1	"	Self-assessmen
3	Sep. 29-Oct 3	Fuzzy control and Fuzzy controller design	1,3	"	Self-assessmen
4	Oct. 6-10	Fuzzy identification and estimation	1,3	Practical work	Self-assessmen
5	Oct. 13-17	Fuzzy Model Reference Learning Control	1,3	Practical work	
6	Oct. 20-24	Neural network and Adaptive Neural- Fuzzy Inference System (ANFIS)	1,3	Practical work	Mid-Term
7	Oct. 27-31	Feedback Control Systems Characteristics. Performance of Feedback Control Systems	1,2	Practical work	Mid-Term
8	Nov. 3-7	Mid-semester break			
9	Nov. 10-14	Neural network control application	1,2	Practical work	Self-assessmen
10	Nov. 17-21	Genetic algorithm-1	1,3,5,6	Practical work	Self-assessmen
11	Nov. 24-28	Genetic algorithm-2	1,3,5,6	Practical work	
12	Dec. 1-5	Applications of IC-1	1,3,5,6	Practical work	Self-assessmen
13	Dec. 8-12	Applications of IC-2	1,3,5,6	Practical work	
14	Dec. 15-19	Applications of IC-3	1,3,5,6	Practical work	Self-assessmen
15	Dec. 22-26	Review	1,3,5,6	Practical work	Self-assessmen
16	Dec. 29- 31	Review	2,6	Practical work	Self-assessmen

Academic Integrity Statement

Honesty and integrity are integral components of the academic process. Students are expected to be honest and ethical at all time in their pursuit of academic goals in accordance with Regulations of Professional Conduct Violations for University of Bahrain Students, UOB Plagiarism Policy and UoB Guide to Students Rights and Duties. Any breach of academic integrity will be dealt according to the Regulations for Professional Conduct Violations

Prepared by: Prof. Ebrahim A. Mattar

Date: September 16, 2025