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Algorithm 2: Function meanValueRefinement(), computes the refinement
procedure using mean value extension
Data: f,X,N
Result: returns Y the value for the mean value extension form for f evaluated over
a partition of X.
h « (sup(X) — inf(X))/N
xi « inf(X)
xl +xi
fori=1:N do
xipl + x1 + 7*h
Xs(7) « infsup(xi,xipl) // Interval class constructor for each subinterval.

N M s W W =

xi ¢ xipl
Xs(N) + infsup(inf(Xs(N)),sup(X))
9 Y + meanValue(f,Xs(1))
10 if N > 1 then
11 \\ fori=2:N do

@«

L Y « hull(Y,mean Value(f,Xs(i)) // take the union of mean extension.

Quadratic & 3 Order Models Comparison
800

© New cases

700 , ©
Quadratic (o]

500 = 3rd Order ° [o)
500
400

300

New cases

100

-200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sample points

Prepared by : Prof. Ebrahim Mattar.



UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LABNO.1
PRACTICAL: MAXIMUM OF (10) MARKS

MULTIVARIABLE BISECTION METHOD ALGORITHM

For the given attached notes (the journal article source):

REVISTADELAUNI'ON MATEM ATICA ARGENTINA Vol.60,No.1,2019,Pages79-98 Published
online:March20,2019 https://doi.orqg/10.33044/revuma.v60n1a06

THE MULTIVARIATEBISECTIONALGORITHM MANUEL L°OPEZ GALV'AN
https://doi.orq/10.33044/revuma.v60n1a06

write a computer algorithm (code) to solve the given problem in the attached article. The code can be
written in (matlab, python, or c++). | do prefer python.

- Verify your coding and results. (5 marks)
- Compare your hand solution (3 steps), and the code solution. (5 marks)

Maximum of three students can work on this laboratory session.
Send your solution to my UoB email account: ebmattar@uob.edu.bh

Prepared by Prof. Ebrahim A. Mattar


https://doi.org/10.33044/revuma.v60n1a06
https://doi.org/10.33044/revuma.v60n1a06
mailto:ebmattar@uob.edu.bh

REVISTA DE LA UNION MATEMATICA ARGENTINA
Vol. 60, No. 1, 2019, Pages 79-98

Published online: March 20, 2019
https://doi.org/10.33044/revuma.v60n1a06

THE MULTIVARIATE BISECTION ALGORITHM

MANUEL LOPEZ GALVAN

ABSTRACT. The aim of this paper is to study the bisection method in R™. We
propose a multivariate bisection method supported by the Poincaré—Miranda
theorem in order to solve non-linear systems of equations. Given an initial
cube satisfying the hypothesis of the Poincaré—Miranda theorem, the algo-
rithm performs congruent refinements through its center by generating a root
approximation. Through preconditioning we will prove the local convergence
of this new root finder methodology and moreover we will perform a numerical
implementation for the two dimensional case.

1. INTRODUCTION

The problem of finding numerical approximations to the roots of a non-linear
system of equations was the subject of various studies, and different methodologies
have been proposed between optimization and Newton’s procedures. In [4] D. H.
Lehmer proposed a method for solving polynomial equations in the complex plane
testing increasingly smaller disks for the presence or absence of roots. In other
work, Herbert S. Wilf developed a global root finder of polynomials of one complex
variable inside any rectangular region using Sturm sequences [12].

The classical Bolzano’s theorem or Intermediate Value theorem ensures that a
continuous function that changes sign in an interval has a root, that is, if f : [a, b] —
R is continuous and f(a)f(b) < 0 then there exists ¢ € (a,b) such that f(c) =0. In
the multidimensional case the generalization of this result is the known Poincaré—

Miranda theorem that ensures that if we have f1,..., f, n continuous functions of
the n variables x1,...,x, and the variables are subjected to vary between a; and
—a;, then if fi(x1,... a4, ..., x,) fi(z1,...,—a;, ..., 2,) < 0 for all z; then there

exists ¢ € [—a;,a;]™ such that f(c) = 0. This result was announced for the first
time by Poincaré in 1883 [§] and published in 1884 [9] with reference to a proof
using homotopy invariance of the index. The result obtained by Poincaré has come
to be known as the theorem of Miranda, who in 1940 showed that it is equivalent to
the Brouwer fixed point [5]. For different proofs of the Poincaré—Miranda theorem
in the n-dimensional case, see [3} [10].

2010 Mathematics Subject Classification. 65K05, 66H10, 65G30.
Key words and phrases. Root-finding algorithm; Non-linear preconditioning; Bisection
method; Interval analysis.
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80 MANUEL LOPEZ GALVAN

Theorem 1.1 (Poincaré—Miranda theorem). Let K be the cube
K={oeR": [, — )| < p. j = 1(1)n}
where p >0 and F = (f1, fa,..., fn) : K = R"™ a continuous map on K. Also, let
Fr={zeK:z,=%+p}, F ={reK:z,=%—p}

be the pairs of parallel opposite faces of the cube K.
If for i = 1(1)n the i-th component f; of F has opposite sign or vanishes on the
corresponding opposite faces F;' and F;~ of the cube K, i.e.

fi(@) fiy) <0, zeFyeF (1.1)
then the mapping F has at least one zero point r = (r1,r9,...,1y) in K.

Throughout this paper we will recall the opposite signs condition as the
Poincaré—Miranda property P.M. The aim of this work is to develop a bisection
method that allows us to solve the non-linear system of equations F(X) =0, X =
(r1,22,...,%,), using the above Poincaré—Miranda theorem. The idea of the al-
gorithm will be similar to the classical one dimensional algorithm: we perform
refinements of the cube domain in order to check the sign conditions on the par-
allel faces. In one dimension it is clear that an initial sign change in the border
of an interval produces another sign change in a half partition of it, but in several
dimensions we cannot guarantee that the Poincaré—Miranda conditions maintain
after a refinement. Even if r is an exact solution, there may not be any such K
(for which holds). However, J. B. Kioustelidis [2] has pointed out that, for &
close to a simple solution (where the Jacobian is nonsingular) of F(X), Miranda’s
theorem will be applicable to some equivalent system for suitable K. Therefore
in case of a fail in the sign conditions with the original system, we should try to
transform it. The idea will be to find an equivalent system through non-linear
preconditioning where the equations are better balanced in the sense that the new
system could be close to some hyperplane in order to improve the chances to check
the sign conditions in some member of the refinement.

We will denote the infinity norm by ||z||. = max{|xi],...,|z,|}, the Euclidean
norm by ||z||2 = \/2? + - - + 22, and the 1-norm by ||z||; = |z1|+ - +]|z,|. Given
a vector norm on R", the associated matrix norm for a matrix M € R™*™ is defined
by

M|, = ”max |Mz|, wherep=o00,2,or 1.
X p=
It is known that in the case of the co-matrix norm it can be expressed as a maxi-
mum sum of its rows, that is if M = (m;;) then ||M|o = max;—1 Z;LZI |mj],
therefore it is easy to see that a sequence of matrices (My), converge if and only
if their coordinates converge. Since the domains involved are multidimensional
cubes, the most proper norm to handle the distance will be the oco-norm.
We will accept r as a root with a small tolerance level ¢ if ||F(r)|, < 6.
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THE MULTIVARIATE BISECTION ALGORITHM 81

2. THE ALGORITHM AND ITS DESCRIPTION

This section gives a step-by-step description of our algorithm, whose core lies in
the classical bisection algorithm in one dimension.

Definition 2.1. A 2™-refinement of a cube K C R" is a refinement into 2" con-
gruent cubes Q = {K', K2, ..., K?"}.

K3 | K4

K' | K?

FIGURE 1. 4-refinement in R2.

S S

FIGURE 2. 8-refinement in R3.

We say that a 2"™-refinement of () satisfies the Poincaré—Miranda condition if
there exist K! € Q such that F : K! — R" satisfies the condition of Theorem

Given a system F(X) = 0, the preconditioned system is G(X) = MF(X) =0
for some matrix M such that the jacobian at X satisfies DG(Xy) = Id. Since
DG(Xy) = MDF(Xy) it turns out that M = DF(X,)~! and it is clear that the
preconditioned system is an equivalent system of F' and both have the same roots.
After preconditioning, the equations in G(X) = 0 are close to a hyperplane having
equation x; = k;, where k; is some constant. This fact comes from the Taylor
expansion of G around Xy, indeed if X is close to X then

and therefore it is clear that the equations are close to some hyperplane. Moreover
if X¢ is nearly a zero point of F then

G(X)~ X — X,

and therefore it will behave like the components of X — Xy, and take nearly opposite
values on the corresponding opposite faces of the cube.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)
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2.1. Algorithm procedure. The multivariate bisection algorithm proceeds as

follows:

(1)

We start choosing an initial guess Ko = [a1,, b1,] X [ag,, b2y | X+ X [ang, bny] C
R"™ satisfying the Poincaré-Miranda condition on F.
We locate the center

¢l = (alo + blo az, + b20 (n, + bno)

5 , 5 yeees 5

of K().

Generate a first 2"-refinement () through c;.

If @, satisfies the Poincaré—Miranda condition, let Ky = [ay,, b1,]X[az,, ba, ] X
- X [an, , bn,| be the quarter of Q1 where the conditions of Theorem

are satisfied, we chose

Co = a’11 + b11 a’21 + b21 anl + bn1
2 92 9 92 R 9
the center of K. If ()1 does not satisfy the Poincaré-Miranda condition
we preconditioning the system in c; setting

G1(X) := DF(c;) 'F(X)

and then we check again the sign conditions with the preconditioned system
G1(X) in Q1.

This recursion is repeated while the Poincaré-Miranda condition are
satisfied, generating a sequence of equivalent systems

Gr_1(X) if G;_1 satisfies P.M. in Q}
DGy 1(ck) 1Gy_1(X) if G_1 does not satisfy P.M. in Qg

Gi(X) =

and a decreasing cube sequence Kj, such that
Kk—i—l C Ky = [alk,blk] X +-+ X [ank,bnk],
where the vertices satisfy

‘Sbjo
>

jo

aj, < aj, < aj, << aj <
bj, > bj, >bj, >...>0bj, > ..
for each j = 1(1)n and where the length of the current interval [a;,, b;,] is
a half of the last iteration,

The root’s approximation after the k-th iteration will be
o — [0 + b1, ag, + b, Qn,, + bn,
k 2 ’ 2 R 9 9
and the method is stopped until the zero’s estimates gives sufficiently ac-
curacy or until the Poincaré-Miranda condition no longer holds.

ajk—l - bjk—l Qg5 — b]o ) (23)
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Remark 2.2. The kth-preconditioning system Gg(X) = (g1, (X), ..., 9n, (X)) can
be expressed as DF(c;) 'F(X), indeed, by induction suppose that it is true for
k — 1, then differencing and evaluating in ¢, we have

Gi(X) = DGp_1(ck) 'Gpr_1(X)
= DGy_1(cp) ' DF(cp_1) 'F(X)
= DF(ct) 'DF(cy_1)DF(ci_1) 'F(X)
= DF(c;) 'F(X).

Since we cannot always ensure that a refinement of a given cube will satisfy
the Poincaré—Miranda condition, we cannot ensure the converge for any map that
only has a sign change in a given initial cube. So, in case of a fail in the sign
conditions in some step, we try to rebalance the system using preconditioning in
the center of the current box recursion. The preconditioning allows us to increase
the chances to be more often in the sign conditions and therefore keep going with
the quadrisection procedure in order to get a better root’s approximation. In
[2], J. B. Kioustelidis found sufficient conditions for the validity of the Poincaré—
Miranda Miranda condition for preconditioning system, there it was proved that
the sign conditions are always valid if the center of the cube K is close enough
to some root of F. So, if we start the multivariate bisection algorithm with an
initial guess close to some root, Kioustelidis’s theorem will guarantee the validity
of Poincaré—Miranda in each step of our method allowing the local convergence
of it.

In the next theorem we will prove the local convergence for the multivariate
bisection algorithm when we preconditioning at each step.

Theorem 2.3. Let F = (f1,..., fn) : Ko — R™ be a C? map defined on the cube
Koy={z e R": ||z — c1|loc < p} = [a14,b1,] X -+ X [Angs bny] with p small enough
satisfying the Poincaré—Miranda sign condition; assume that DF(X) is invertible
for all X € Ky, furthermore, suppose that we perform the preconditioning at each
step. Then the multivariate bisection algorithm generates a sequence cy such that

(1) Starting at Ko, cx Wl with F(r) =0.

> j=1bjo — aj

Qk

(2) llew = 7rll2 <

Proof. (1) The Poincaré—Miranda sign conditions guarantee the existence of a root
inside Ky and given a refinement (); of K since p is small enough Item c of
Theorem 2 in [2] guarantees the validity of Poincaré—Miranda sign conditions for a
member of (1. Performing successive refinements we will always find a member K},
of the refinement () satisfying the sign conditions for the preconditioned system
G (X). For each j = 1(1)n the sequences (a;, )k, (bj, ) are monotone and bounded
and therefore they converge. From equation we have for each j = 1(1)n,

kli}rrolo aj, = klggo bj, =7;j (2.4)
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84 MANUEL LOPEZ GALVAN

and from the border conditions,

91, (a1, , 22, .. 201, (b1, T2, ..., 2n) <0 Ve Ky
gjk(.’L‘l,. ey Lj—15Ag s L1y - - ,acn)gjk(xl,. .. 7xj—1abjk7$j+17- . .,:En) S 0 Vze Kk

Inp (T1y oo Tty Gy )Gy, (T1, oy Tp—1,bp, ) <O V€ K
(2.5)
Since the diameter of K} tends to zero by Cantor’s intersection theorem the
intersection of the K} contains exactly one point,

{p} = ﬂ Ky,

and the equations (2.4 guarantee that p = (r1,...,7,). Then, we can evaluate
equations ([2.5) in p = (rq,...,7,), getting
g1, (a1, 2, ... m0)g1, (b1,,72,...,mn) <OV EkEN
(2.6)
gnk(rla N . ank)gnk(rla ey -1, bnk) S O v k S N
It is clear that

o — a, + b1, as, + ba, Ay, + by,
k 2 9 2 yeeey 2

— (r1,...,mp) =71
k— o0

then by the continuity of DF and the continuity of the inversion in the oo-matrix
norm we have

DF(c;)"t — DF(r)~ L.
Let G(X) = DF(r) ' F(X) = (g1(X), ..., gn(X)); since
IDF(cx) "' F(X) — DF(r) ' F(X)|loc < |[DF(ck)™" = DF(r) "o | F(X)[loc — O
for each X € K then we get the punctual convergence for each coordinate function
93 (X) = 95(X)-

From equations we have

G (T15 - i1, Q4 Tty - -5 Tn) = gi(r1,... 7, ...,m) for each j =1(1)n,

Gin (11,21, b4, 41, o) = g5 (T1, .., .. my)  for each j = 1(1)n;
therefore taking limit in equations we get

gi(ri,ra,...yrn)? <0 Vi =1(1)n,

and finally it is clear that F(ry,...,7,) = 0.
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(2) Let (¢j, )k, j = 1(1)n, be the coordinates of the sequence (cg)x; we have the
following estimation:

bi — as
|cj — 5] < 302—,;% for each j = 1(1)n.
Indeed, since the sequences (aj, ) and (b, ) are monotone and bounded by r; we
get for each j = 1(1)n,

a; b; a; b;
Jk—1 Jk—1 e < Jk—1 Jk—1

Cjk - Tj = 2 2 J = 2 + 2 - a’jk—l
_ bjk—l . Qjp_q _ bjo — Qjq
2 2 2k )

On the other hand,

Ay bjk—l Qjp_y bjk—l
2 2 T2 2 e
bj_y  Gj, bj, — ajq
- _( 9 - 9 ) - _( Qk )

Cjp, =T =

Therefore,

lew = rlls = /s (en = 13 < S ey, =]
< Z?:l bjo — aj,
J— 2k M
As in the classical one dimensional bisection algorithm, Item 2 of Theorem
gives a way to determine the number of iterations that the bisection method would

need to converge to a root to within a certain tolerance. The number of iterations
needed, k, to achieve the given tolerance ¢ is given by

. Z?:l bjo — Q5o \ log (Z?:l bjo - ajo) — logo
k = log, 5 = log 2 .

0

3. IMPLEMENTATION, PERFORMANCE, AND TESTING

Throughout this section we will focus in the implementation and performance
of the bisection algorithm in R2. The bisection algorithm was developed in MAT-
LAB in a set of functions running from a main function. In order to check the
P.M. conditions for the function F = (f1, f2) we need to compute the intervals
fi(F5), fi(F;) (i = 1,2) and one way to achieve this is by using interval analysis
(TA). TA was marked by the appearance of the book Interval Analysis by Ramon
E. Moore in 1966 [6] and it gives a fast way to find an enclosure for the range of
the functions. A disadvantage of TA is the well-known overestimation. If intervals
fi(ET), f:(F;) are available then the P.M. follows from the condition

sup{y 1y € fi(F; )} <0 <inf{y:y € fi(F;")} (3.1)

or

sup{y:y € fi(F;)} <0< inf{y:y € fi(F, )} (3.2)
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36 MANUEL LOPEZ GALVAN

Interval-valued extensions of real functions give a way to find an enclosure of the
range of a given real-valued function. Most generally, if we note by [R] the set of all
finite intervals, we say that [f] : [R]™ — [R] is an interval extension of f : R” — R
if

[F1(X) 2 {f(x) : z € X},

where X = (X1,...,X,,) represents a vector of intervals. There are different kinds
of interval functional extensions; if we have the formula of a real-valued function f
then the natural interval extension is achieved by replacing the real variable x with
an interval variable X and the real arithmetic operations with the corresponding
interval operations. Another useful interval extension is the mean value form. Let

m = m(X) be the center of the interval vector X and let [gi] be an interval
extension of gi 5 by the mean value theorem we have
f(X) € [fmo)(X) = f(m) + Z[ax,](X)(Xi —my),
i=1 "

where [f,,,](X) is the mean value extension of f.
Let [f;](E;), [fi](F;) be an interval extension of f;(F;"), f;(F;"); then it is clear
that if

sup{y : y € [fi](F;)} <0 <inf{y:y e [fi](F;)} (3.3)

or

sup{y 1y € [fi](F;")} <0 <inf{y : y € [£](F7)}, (3.4)

equations and are also true. So, in order to check the P.M. conditions
along the edges we will compute equations and .

Various interval-based software packages for MATLAB are available; we have
chosen the well-known INTLAB toolbox [I1]. The toolbox has several interval
class constructor for intervals, affine arithmetic, gradients, hessians, slopes and
more. Ordinary interval arithmetic has sometimes problems with dependencies and
wrapping effect given large enclosures of the range and therefore overestimating the
sign behaviour. A way to fight with this is affine arithmetic. In affine arithmetic
an interval is stored as a midpoint X together with error terms Fjy, ..., Fx and it
represents

X =Xo+ E1Ui + ESUy + - - - + Ep U,

where Uy, ..., Uy are parameters independently varying within [—1,1]. In order
to avoid an overestimation in the range enclosure of f;(F; ) and f;(F;") we also
compute the interval extension using the affine arithmetic.
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Another way to improve the enclosure of the range and get sharper lower and
upper bounds is through subdivision or refinements. In this methodology we per-
form subdivision of the domain and then we take the union of interval extensions
over the elements of the subdivision; this procedure is called a refinement of [f]
over X. Let N be a positive integer; we define

(Xi)

X .
X, = [inf X; + (j — l)w(N ),iani +j—wN ],

j=1,...,N.

X;
We have X, = Uj-vlei,j and w(X; ;) = w(N ) and furthermore,

i w(X)
X:Ué\'L’[:l(XlJl""’Xn;jn) Wlth w(lejl,,Xan) = N .

The interval quantity

[f]N(X) = Uﬁ:l[f](XlJU s aXn,jn)

is the refinement of [f] over X.

The algorithms that we have performed to compute equations and
combine all the above methodologies and were adapted from [7]. In the following
steps we summarize the routines that we have performed. The mean value exten-
sion was implemented using an approximation of [gi L] through the central finite

k3

difference of the natural interval extension of f, that is

ofi _ [fI(X +0.0001) — [£](X —0.0001)
[3a:i](X) - 2 0.0001

Algorithm [I] shows the routine for the mean value extension.

Algorithm 1: Function meanValue(), computes the mean value extension

Data: f, X

Result: returns F'muv the value for the mean value extension form for f evaluated
over the interval X.

m < mid(X)

fm < f(m)

derf < f(X +0.0001) — f(X — 0.0001)/(2 % 0.0001)

Fmv < fm + derf * (X — m)

W N =

The refinement procedure was implemented twice, one for the case of mean
value extension and other for the affine arithmetic implementation. Algorithm
computes the mean value extension over an uniform refinement of the interval X
with NV subintervals and Algorithm [3] computes the natural extension using affine
arithmetic.
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Algorithm 2: Function meanValueRefinement(), computes the refinement
procedure using mean value extension

N 0 ok WON

©

10
11
12

Data: f, X, N
Result: returns Y the value for the mean value extension form for f evaluated over
a partition of X.

h < (sup(X) — inf(X))/N

xi + inf(X)

x1 + xi

for:=1: N do
xipl + x1 + i*h
Xs(i) « infsup(xi,xipl) // Interval class constructor for each subinterval.
xi < xipl

Xs(N) « infsup(inf(Xs(N)), sup(X))
Y < meanValue( f,Xs(1))
if N > 1 then
fori=2:N do
L |_ Y < hull(Y,mean Value(f,Xs(i)) // take the union of mean extension.

Algorithm 3: Function affinelntervalRefinement(), computes the refinement
procedure using affine natural extension

N 0 ok W R

©

10
11
12

Data: f, X, N
Result: returns Y the value for the affine natural extension form for f evaluated
over a partition of X.

h < (sup(X) — inf(X))/N

xi + inf(X)

x1 + xi

fori=1:N do
xipl + x1 + i*h
Xs(i) < infsup(xi,xipl) // Interval class constructor for each subinterval.
xi <— xipl

Xs(N) «+ infsup(inf(Xs(N)), sup(X))
Y + f(affine(Xs(1)))
if N > 1 then
for:=2: N do
\\ |_ Y <+ hull(Y,f(affine(Xs(7))) // take the union of natural affine extension.

Now we are ready to compute equations (3.3) and (3.4) using the above algo-

rithms. Let K! = [ay,,b1,] X [ag,,bs,] = I1, X I3, be a member of the refinement Q
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and let

i1 = fz(',azl) : [allabll] - R, fi2= fz(',bzl) : [alpbll] — R,

f21 - fl(alw') : [a2wb2z] — R, f22 - fl(blzv ) : [a2z7b21] — R

be the coordinate functions on the edges of K' (I = 1...4), Algorithmsummarizes
the routine that we have performed using IA in order to compute the sign along
the edges.

Algorithm 4: Function signeval(), computes the sign along the edges of K’

N 0 oA W N K

© w

10

11
12
13
14
15
16

17
18
19

20

Data: fij, Ii[ = [ail,bil], N

Result: returns signf;;, the sign of f;; on I;;, 1 means positive, —1 negative and
NaN indicates an empty output when the sign is not constant.

Dom < infsup(a;,,b;;) // interval class constructor for Iy

Fmv < mean ValueRefinement(f;;,Dom,N) // Apply Algom'thm@

extmin < inf(Fmv)

extmax < sup(Fmv) // computes the max and min of the mean extension

if extmin > 0 then

signfi; < 1 // check equation

return

if extmax < 0 then

signfij — -1

return
aff < affinelntervalRefinement(f;;,Dom,N) // Apply Algom'thm@
extmin <« inf(aff)
extmax <— sup(aff) // computes the maz and min of the affine extension
if extmin > 0 then
signfi; < 1 // check equation

return

if extmax < 0 then
signfi; < —1
return

signf;; < NaN

Algorithm [b| summarizes the implementation of the Bisection Algorithm that we

have performed in MATLAB.
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Algorithm 5: Bisection algorithm

Data: Ko, F= (f1, f2) system to solve, DF Jacobian of F, §, N
Result: c root’s approximation

1 if K satisfies P.M. then
2 ¢ < center of Kjo;
3 error < [|F(c)||;
4 stop + 1;
5 Florig < f1;
6 F2orig < fa;
7 while (error > d ) A (stop < 3) do
8 (K', K%, K3, K4) + Generate a refinement of K through c;
9 (signfi1,signfio,signfo1,signfaa) < signeval (fi;,1:1,N) 4,5 =1,2 // Apply
Algom'thm@ on each edge of K1
10 stop <— stop+1;
11 if signfi1signfio < 0 A signfaisignfoz < 0 then
12 ¢ < center of K;
13 Ko + K1;
14 error < ||[F(c)||;
15 stop < stop — 1;
16 Pass to next iteration
17 (signfi1,signfiz,signfo1,signfae) < signeval (fij, Li2,N) 4,5 =1,2; // Apply
Algom'thm@ on each edge of K2
18 if signfi1signfio < 0 A signfaisignfoz < 0 then
19 ¢ < center of K2;
20 Ko + K?2;
21 error < [|[F(c)||;
22 stop ¢— stop — 1;
23 Pass to next iteration
24 (signfi1,signfiz,signfa1,signfaz) < signeval (fij, Ii3,N) 4,5 =1,2; // Apply
AlgorithmIZI on each edge of K3
25 if signfi1signfio < 0 A signforsignfaoe < 0 then
26 ¢ < center of K3;
27 Ko «+ K3;
28 error < [|[F(c)|l;
29 stop < stop — 1;
30 Pass to next iteration
31 (signfi1,signfio,signfo1,signfaa) < signeval (fi;,1:4,.N) 4,5 =1,2; // Apply
Algom'thm on each edge of K*
32 if signfi1signfio < 0 A signfaisignfoa < 0 then
33 ¢ < center of K*;
34 Ko + K4
35 error < ||F(c)||;
36 stop < stop — 1;
37 Pass to next iteration
38 DFc + DF(c); // Build the preconditioning G(X)
39 invDFc < inv(DFc);
40 f1 < invDFc(1,1)*Florig+invDFc(1,2)*F2orig;
41 | f2 «+ invDFc(2,1)*Florig+invDFc(2,2)*F2orig;
42 else

43 |_ return Wrong Rg
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In order to check the accuracy and performance of the algorithm, we test it
through different systems of equations. We start testing the new algorithm in a
transcendental system of equations used by Broyden in [1],

E)(e%l —e)+ % — 2ex;.

The initial guess rectangle used for this problem was Ky = [0.4,0.55] x[3, 3.5] and
the tolerance level was setted in § = 10~!%. The interval analysis refinement used
to compute the sign along the edges is N = 3. Figure [3| illustrates the algorithm
behaviour with the respective preconditioning procedure and Table [1| shows the
numerical solution.

3.5

i
3.45 \ |

|
3357
|
33r

|
> 3.20

-

327

3157

"
|
|
\
|
i
i
;jlﬂ:
]
[
I
i1
|
|
1

31t = i

3.05 .~

.45

F1GURE 3. Bisection algorithm procedure for Broyden system.

The solid red line represents f; and the dashed blue line repre-
sents fo for the equivalent system Gy (X) = 0.

c
0.500000000000000
3.141592653589793

F(c)
-0.227513305973815 le-15

-0.643347227536409 1e-15

TABLE 1. Root’s approximation, evaluation, iteration performed
and initial guess for Broyden system.

iter Ko
48 [0.4,0.55] x [3,3.5]

A straightforward computation shows that the solution for the system is (1, z2) =
(0.5, ) and therefore we can check the consistency of the error estimation given
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by Theorem at each iteration,

(0.55—0.4) + (3.5—3) _ 0.65
ok 9k

€k = ”Ck - (05777)”2 <

Figure 4] illustrates the error behaviour in logarithmic scale at each iteration.

k

FIGURE 4. Error procedure for Broyden transcendental system.
The red line represents e, and the dashed blue line represents the
error bound.

In the following steps we test the algorithm in several other problems. We will
see that in some systems the algorithm needs preconditioning in order to guarantee
the P.M. conditions through the refinement. Let

Fi(z,y) = (@° +y* — Lz —y°)

Fo(z,y)=Q2rx—y—e *, —x+2y—e Y)

Fs(z,y) = (sin(x) + cos(y) 4+ 2(x — 1),y — 0.5(x — 0.5)* — 0.5)
Fy(z,y) = (2* — cos(xy), e™ + y)

F5(z,y) = (x cos(y) + ysin(z) — 0.5, ee TV y(1+ 2?))
Fo(z,y) = (z +5(z —y)° — 1,0.5(y — 2)° +y)

be the testing maps. In Table [2| we show the numerical performance for the testing
maps. The method was implemented setting the tolerance level in § = 10~'% and
the interval analysis refinement in N = 3.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



THE MULTIVARIATE BISECTION ALGORITHM

93

F c F(c) iter Ko

F; 0.618033988749895  0.004965068306495 le-14 51 [0,1] x [0, 1]
0.786151377757422 -0.123942463016433 1le-14

F, 0.567143290400784  0.111022302462516 1e-15 50  [0,1] x [0, 1]
0.567143290409784  0.111022302462516 1e-15

Fs 0.378316940137480  0.139577647543639 le-15 51 [0,1] x [0, 1]
0.507403383528753  -0.072495394968176 1le-15

F, 0.926174872358938  (0.129347223584252 le-15 49  [0,1] x [—1,0]
-0.582851662173280 -0.115653908517277 le-15

F;  0.353246619506717 -0.244439451327881 le-15 52 [0,1.1] x [0, 2]
0.606081736641465  0.047257391058546 1e-15

Fs 0.510030862987151 -0.045236309398304 1e-13 42 [0.4,1] x [0,0.4]

0.048996913701194

-0.904901681894059 1e-13

TABLE 2. Root’s approximation, evaluation, iteration performed
and initial guess for testing maps.

Figure [5] illustrates the algorithm behaviour for the testing maps with the re-

finement procedure. The systems of equations and their successive possible precon-
ditionings are represented by a zero contour level on an mesh on the initial guess
Ky and the refinement procedure was illustrated using the rectangle MATLAB’s
functions.

4. NEWTON’S COMPARISON

In this section we are going to compare the performance of our method against
the classical multivariate Newton algorithm. It is well-known that the classi-
cal Newton’s method has several numerical problems when the systems are ill-
conditioned, i.e., systems having a “nearly singular” Jacobian at some iterate, get-
ting slower rate of convergence and large numerical errors. The main advantage of
our methodology is that it is not always necessary to perform the preconditioning
at each step and therefore it can skip the ill-conditioned problem.

Let us consider the following system, F(z,y) = (2% + y? — 1,2y — 22).

V2 V2

—) and a straightforward computation shows

This

function has a zero in x* = (

that the system is ill-conditioned for any value sufficiently close to the origin.
Newton’s method cannot be initialized in (0,0), however our algorithm can be
evaluated in (0,0) avoiding the singularity of the Jacobian.
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FIGURE 5. The first row illustrates the algorithm procedure for
F1,Fs, the second for F3,F4 and the third for F5, Fg. The solid
red line represents the first coordinate, while the dashed blue
line represents the second coordinate for the equivalent system

Gi(X) = 0.
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Figure[6|and Table[3|show the behaviour of the reduction of error norms ||c; —z*||

and ||F(cg)|| through iteration steps for the Bisection and Newton methods.

1 (i)l

1020

1015 o
1010 -
105

100

10710
0

TABLE 3. Error norms [|F(ck)||, ||cx —2*|| for the Newton and the

— — — Newton

Bisection

llew — ||

25 30

1010

109

100

105

10710
0

Bisection

— — — Newton

FI1GURE 6. Newton vs Bisection performance.

25

Newton Bisection
Step |[[F(c)ll  lew =2 NF(er)ll  lex — 7]
2 1,88e+15 4,32e+07 3,54e-01  2,93e-01
4 1,34e+14 1,15e+07 3,87e-02  2,77e-02
6 8,38e+12  2,89e+06 7,94e-03  5,63e-03
8 5,24e+11  7,22e+05 1,51e-04  1,07e-04
12 2,05e+09 4,51e+04 3,37e-04  2,38e-04
14 1,28e+08 1,13e+04 2,90e-05  2,05e-05
16 7,99e+06 2,82e+4-03 1,53e-06  1,08e-06
18 4,99e+05 7,04e+02 6,10e-06  4,32e-06
20 3,12e+04 1,75e+02 3,82e-07  2,70e-07
24 1,22e4+02 1,00e+01 2,42e-08  1,71e-08
28 2,51e-01  1,22e-01 1,85e-09  1,31e-09

Bisection methods after the iteration step for both cases.

30
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The initial guess used to perform the Newton’s method was (1073,107?) which
is inside and very close to the vertex of the initial square Ky = [0, 1] x [0, 1] used
to perform the Bisection method. As depicted in Figure [6] the Bisection method
is highly superior to the Newton method in respect to achieve convergence. Bisec-
tion’s method achieves a norm error of 1,31e-09 after 28 iteration, however Newton’s
method achieves a norm error of 1,22e-01 demanding much higher numerical effort.

As a second example, we try the system F(x,y) = (2 — 4y + y* — 1,22 — ¢?).
In Figure [7] and Table 4] we compare the Newton method and the Bisection; the
starting square was Ky = [1.0000001, 1.98] x [1, 2] and the initial guess for Newton

was the lower left vertex (1.0000001, 1) of K.

10'8

1001

17 (o)l

Bisection
— — — Newton

1001 1
105 F \ T

10-10
0

F1GURE 7. Newton vs Bisection performance.

15 20

Newton  Bisection
Step  [F(ca)| [F(ca)]
2 4,76e+13 4,14e-01
4 3,03e+12  1,10e-01
6 1,91e+11 6,55e-03
8 1,19e+10 4,08e-03
12 4,66e+07 1,12e-04
14 2,91e4+06 2,48e-05
16 1,82e+05 4,26e-06
18 1,14e4+04 4,07e-06
20 7,10e+02 8,86e-07
24 2,33e+00 4,06e-08

TABLE 4. Error norms ||F(cy)|| for the Newton and the Bisection

method after the iteration step for both cases.
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The condition number of the Jacobian matrix is close to 4e7 and therefore we
are present to a ill-conditioned problem induced by a bad initial guess given by
(1.0000001, 1). However, the bisection method can start in this same vertex and
can skip the Jacobian illness without preconditioning in the first steps. Bisection’s
method achieves a norm error of 4,06e-08 after 24 iteration, however Newton’s
method achieves a norm error of 2,33e+00.

5. CONCLUSION

In this work we have clarified how a multidimensional bisection algorithm should
be performed extending the idea of the classic one dimensional bisection algorithm.
Due to the preconditioning at each step we could prove a local convergence theorem
and we also found an error estimation. Interval analysis allowed a fast and reliable
way of computing the Poincaré—Miranda conditions and the numerical implemen-
tation showed that the method has a very good accuracy similar with the classic
methods like Newton or continuous optimization. We also have compared the per-
formance of the Bisection method against the classical Newton method and we
found that our methodology improves the speed of convergence in ill-conditioned
problems.
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UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO.2
PRACTICAL: MAXIMUM OF (10) MARKS

NEWTON" S METHOD (ALSO KNOWN AS NEWTON---RAPHSON METHOD)

c \x?/5625 — y*/1687

Quoted [1] picture.

Quoted [1]

(The LORAN (LOng RAnge Navigation) system calculates the position of a boat at sea using signals from fixed
transmitters. From the time differences of the incoming signals, the boat obtains differences of distances to the
transmitters. This leads to two equations each representing hyperbolas defined by the differences of distance of two
points (foci). An example of such equations from are).

y2 xZ
filoy) = 3001862 + 1862 1

_ (y=500*  (x=300)* _
f2(x,y) = 2792 (5002-279)2 1




Solving two quadratic equations with two unknowns, would require solving a 4 degree polynomial equation. We
could do this by hand, but for a navigational system to work well, it must do the calculations automatically and
numerically. We note that the Global Positioning System (GPS) works on similar principles and must do similar
computations.

- Solve this set of nonlinear equation by hand (Newton’s Method):

filx,y) =y + 1.02x3
fo(x,y) = —0.9x + y3

- Graph the solution. Hence, show that (1,0), is an initial point of solution.

- Solve the above problem by hand using NEWTON’S METHOD (ALSO KNOWN AS NEWTON,
RAPHSON METHOD).

- Write a computer algorithm - code to solve the above NEWTON’S METHOD (ALSO KNOWN AS
NEWTON, RAPHSON METHOD).

- Show the code, hence verify your computer algorithm and the hand results.

[1] LORAN (LOng RAnge Navigation) system.

Prepared by Prof. Ebrahim A. Mattar



UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO.3
PRACTICAL: MAXIMUM OF (10) MARKS

LEAST SQUARE APPROXIMATION AND CURVE-FITTING

Write the experiment objectives, aims, procedures, results, and conclusions.

PART A: (5 MARKS)

- Find through hand calculations the polynomial (3" order - polynomial) which passes through (-0.5,-1),
(2.05,3.2), (4,10.3), and (6,15.2) using the LEAST SQUARE APPROXIMATION.
- Use the model for Linear Interpolation to find the value of the Y axis, once X=5.5.

PART B: (5 MARKS)

Write a code (in Matlab, python, or n C++) (your code) for the creation of LINEAR INTERPOLATION (LEAST
SQUARE APPROXIMATION AND CURVE-FITTING. (5 marks).

Verify your coding and results using (matlab, c++, or python) solution, for any point on space.
- Compare your hand algorithm solution with the script coding.

Prof. Ebrahim Mattar.



UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO. 4
PRACTICAL: MAXIMUM OF (10) MARKS

For the following 6™ order linear matrix system,

3 -04 O -09 0.02 0.01 1.2
-12 42 -1 0 —0.88 0 0
0= 0.03 —-12 45 0 0 -1.2 b= 0
-0.9 0 0 3.7 -1 0 ’ 0
\ 0 -1.2 0 -1.1 4 -1 / \0.03/
0 0.02 -14 0 —-0.7 35 0

Apply the Jacobi, Gauss-Seidel, and OR (with optimal relaxation factor) techniques, in such a way to find ...
the followings.

- Write a computer algorithm using (matlab, python or c++) to solve for the (non OR Gauss-Seidel)

to get the results. 4

- Write a computer algorithm using (matlab, python or c++) to solve for the (OR Gauss-Seidel) to
get the results. 4

- Write a brief Conclusion. 2

You might use all zeros initial values.

Prepared by Prof. Ebrahim A. Mattar.



UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO. 5
PRACTICAL: MAXIMUM OF (10) MARKS

LEAST SQUARE APPROXIMATION AND CURVE-FITTING

Write the experiment objectives, aims, procedures, results, and conclusions.

PART A: (5 MARKS)

Find through hand calculations the polynomial (3™ order - polynomial) which passes through (-0.5,-1),
(2.05,3.2), (4,10.3), and (6,15.2) using the LEAST SQUARE APPROXIMATION.
Use the model for Linear Interpolation to find the value of the Y axis, once X=5.5.

PART B: (5 MARKS)

Write a code (in Matlab, python, or n C++) (your code) for the creation of LINEAR INTERPOLATION (LEAST
SQUARE APPROXIMATION AND CURVE-FITTING. (5 marks).

Verify your coding and results using (matlab, c++, or python) solution, for any point on space.
Compare your hand algorithm solution with the script coding.

Prepared by Prof. Ebrahim Mattar.



UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO. 6
PRACTICAL: MAXIMUM OF (10) MARKS

NONLINEAR ITERATIVE METHODS GAUSS-SEIDEL AND GAUSS-JACOBI TECHNIQUES

For the following 6th order linear set or system, convert the below set of linear equations to be nonlinear

as below ( use the form for the nonlinear case) ... given - nonzero - initial values,
3 —-04 O —-09 0.02 0.01 1.2
-12 42 -1 0 —0.88 0 0
0= 0.03 —-1.2 45 0 0 —-1.2 b= 0
-0.9 0 0 3.7 -1 0 ’ 0
0 —-1.2 0 -1.1 4 -1 0.03
0 0.02 -1.4 0 —-0.7 3.5 0

flwd=w+e @+ 683

g(w,8) = w? + 2wé — 5% + tan (w)

Apply the (Gauss-Seidel), and (Gauss-Jacobi) techniques, in such a way to perform the following.

- Write a code for (Gauss-Seidel) to get the results. 4
- Write a code for (Gauss-Jacobi) to get the results. 4
- Compare number of iterations, for both Gauss-Seidel and Gauss-Jacobi. 2

You might use all zeros initial values. For the coding and scripting, please use (c++, or python, or matlab),

with .. preferably python.
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UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO.7
PRACTICAL: MAXIMUM OF (10) MARKS.

NUMERICAL INTEGRATION AND DIFFERENTIATION PRACTICE

SolarPanel Output- Trapezoid Rule

120

100

80

60

power (W)

40

20

time (h)

Source: MATLAB Tutorial = NUMERICAL INTEGRATION

% Numerical Integration ..
clear
cle

% xl is the lower bound,
% xu is the upper bound,
% and wid is the interval width



x1=0.2;
xu=10;
wid=1;
k=0;

1=0; % the integral needs to be initialized
for ii=xl:wid:xu-wid
k=k+1;
Al=((1/ii)+4*(1/(ii+wid/2))+(1/(ii+wid)))/6*wid]
|=1+Al

pp(k)=l;
end

plot(pp)
grid

% USe different fuctions

% Covert this to a function ..

% function [l,err]=int1x(x|,xu,wid)
% End ..

- Do the Numerical Differentiation and Numerical Integration for the same example (The given
function) by hand. Show your steps.

- Do Numerical Differentiation and Numerical Integration for the same example (The given
function) by computing coding (I prefer python). Show your steps.

- Explain the hand and code algorithms, and elaborate on the difficulties.

- Compare the two results.
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UNIVERSITY OF BAHRAIN
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NUMERICAL ANALYSIS
EENG 205

COMPUTER LAB NO.8
PRACTICAL: MAXIMUM OF (10) MARKS.

NUMERICAL SOLUTION OF NONLINEAR DIFFERENTIAL EQUATIONS

mL*8 = —mgLsin 6 +1(t) .

Linearize the differential equation.

Quoted Figure, from nonlinear systems.
https.//www.pngwing.com/en/search?q=inverted+Pendulum

For the above nonlinear 2" order inverted pendulum dynamic system:

- Solve the above differential equation numerically by hand, show only 4 steps. (3 marks)

- Write a computer algorithm - script-code (using c++ or matlab or python, | prefer python) to solve
the above nonlinear system dynamics and differential equation numerically. (3 marks)

- Use the matlab (ode23) function to simulate the system dynamics, hence comment on the hand
calculations and the computer algorithm calculations. (4 marks)
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